Abstract
High-resolution studies of DNA–ligand interactions in the cellular environment are problematic due to the lack of suitable biophysical tools. To address this issue, we developed an in-cell NMR-based approach for monitoring DNA–ligand interactions inside the nuclei of living human cells. Our method relies on the acquisition of high-resolution NMR data of cells electroporated with pre-formed DNA-ligand complex. The impact of the intracellular environment on the integrity of the complex is assessed on the basis of in-cell NMR signals from unbound and ligand-bound forms of a given DNA target. By using this technique, we studied complexes of model DNA fragments and four ligands, representative of DNA minor-groove binders (netropsin) or ligands binding to DNA pairing defects (naphthalenophanes). We demonstrate that some of the in vitro validated ligands retain their ability to form stable on-target DNA interactions in situ, while other lose this ability due to off-target interactions with genomic DNA as well as cellular metabolic components. Collectively, our data suggest that direct evaluation of behavior of drug-like molecules in the intracellular environment provides important insights for the design and development of DNA-binding ligands with the desired biological action and minimal side effects resulting from off-target binding.
Supplementary materials
Title
Krafcikova et al SI
Description
Actions