Insight into D6h Symmetry: Targeting Strong Axiality in Stable Dysprosium(III) Hexagonal Bipyramidal Single-Ion Magnets

10 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three dysprosium(III) single-molecule magnets (SMMs) with the rare hexagonal bipyramidal geometry have been isolated for the first time. Following a novel synthetic strategy where the strong uniaxial ligand field generated by the Ph3SiO- (Ph3SiO- = anion of triphenylsilanol) and the 2,4-di-tBu-PhO- (2,4-di-tBu-PhO- = anion of 2,4-di-tertbutylphenol) ligands combined with the weak equatorial field of the ligand LN6, leads to [DyIII(LN6)(2,4-di-tBu-PhO)2](PF6) (1), [DyIII(LN6)(Ph3SiO)2](PF6) (2) and [DyIII(LN6)(Ph3SiO)2](BPh4) (3) hexagonal bipyramidal complexes with high anisotropy barriers of Ueff = 973 K for 1, Ueff = 1080 K for 2 and Ueff = 1124 K for 3 under zero applied dc field. Ab initio calculations predict that the dominant magnetization reversal barrier of these complexes expands up to the 3rd Kramers doublet, thus revealing for the first time the exceptional uniaxial magnetic anisotropy that even the six equatorial donor atoms fail to negate, opening up the possibility to other higher-order symmetry SMMs.

Keywords

Single Molecule Magnets

Supplementary materials

Title
Description
Actions
Title
Insight into D6h symmetry
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.