A Plug-and-Play Approach for the De Novo Generation of Dually Functionalised Bispecifics

03 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Diseases are multifactorial, with redundancies and synergies between various pathways. However, most of the antibody-based therapeutics in clinical trials and on the market interact with only one target thus limiting their efficacy. The targeting of multiple epitopes could improve the therapeutic index of treatment and counteract mechanisms of resistance. To this effect, a new class of therapeutics emerged: bispecific antibodies.

Bispecific formation using chemical methods is rare and low yielding and/or requires a large excess of one of the two proteins to avoid homodimerisation. In order for chemically prepared bispecifics to deliver their full potential, high-yielding, modular and reliable cross-linking technologies are required. Herein, we describe a novel approach not only for the rapid and high-yielding chemical generation of bispecific antibodies from native antibody fragments, but also for the site-specific dual functionalisation of the resulting bioconjugates. Based on orthogonal clickable functional groups, this strategy enables the assembly of functionalised bispecifics with controlled loading in a modular and convergent manner.

Keywords

bioorthogonal chemistry
bispecific antibody
Protein labeling
dual modification
Click Chemistry Conjugation Reactions

Supplementary materials

Title
Description
Actions
Title
SI - A plug-and-play approach for the de novo generation of dually functionalised bispecifics
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.