Palladium/ Zeolite Low Temperature Passive NOx Adsorbers (PNA): Structure-Adsorption Property Relationships for Hydrothermally Aged PNA Materials

03 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Zeolites with different framework structures (SSZ-13, ZSM-5, BEA) but similar Si/Al ratios and Pd loading (~1 wt%) were synthesized and evaluated as low temperature passive NOx adsorbers (PNA). These materials exhibit high NOx adsorption efficiency with atomically dispersed Pd the active adsorption site. Hydrothermal aging at 750 ºC for 16 hours in the presence of 10% water vapor in air resulted in the formation of PdO nanoparticles in all three samples as evidenced by high energy XRD. Hydrothermal aging of the small-pore Pd/SSZ-13 (Si/Al = 6), which contain ~100-90% atomically dispersed palladium ions, decreases its PNA performance only by ~10-20%, indicating agglomeration of only ~10-20% of all atomically dispersed Pd into PdO. High-field solid state 27Al NMR studies on the fresh and aged samples substantiate dealumination and significant changes in the distribution of Al (and thus, Brönsted acid) sites after hydrothermal aging. FTIR measurements with NO probe molecule and titration of Brönsted acid sites with nitrosyl (NO+) ions further corroborate the 27Al NMR data. Because framework aluminum atoms are the anchoring sites for atomically dispersed Pd ions, their elution from the framework causes the loss of active atomically dispersed Pd species. With the aid of HAADF-STEM imaging and synchrotron XRD studies, we further confirm and visualize the fate of these Pd species – they agglomerate into PdO nanoparticles on the external surface of zeolite. Consequently, these changes lead to the decrease in PNA performance of these materials after hydrothermal aging. The thus formed agglomerates cannot be re-dispersed back to their ionic state due to the loss of framework Al T-sites and/or inherent stability of such large PdO particles.

Our study demonstrates that, unlike in previous studies that found increased PNA performance upon HTA, high temperatures hydrothermal aging of PNA materials, that contain atomically dispersed Pd initially, results in a decrease in NOx storage efficiency due to the formation of PdO agglomerates. However, we also highlight the high hydrothermal stability of predominantly atomically dispersed 1-3 wt% Pd/SSZ-13 (Si/Al = 6), whose performance decreases only marginally after prolonged hydrothermal aging at 750 ºC. This study shows that hydrothermally stable passive NOx materials can be prepared using small-pore SSZ-13 zeolite.

Keywords

Passive NOx adsorber
Atomically dispersed Pd
Zeolite SSZ-13
Hydrothermal aging
FTIR
Solid state MAS NMR
HAADF-STEM imaging

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.