Abstract
Zeolites with different framework structures (SSZ-13, ZSM-5, BEA) but similar Si/Al ratios and Pd loading (~1 wt%) were synthesized and evaluated as low temperature passive NOx adsorbers (PNA). These materials exhibit high NOx adsorption efficiency with atomically dispersed Pd the active adsorption site. Hydrothermal aging at 750 ºC for 16 hours in the presence of 10% water vapor in air resulted in the formation of PdO nanoparticles in all three samples as evidenced by high energy XRD. Hydrothermal aging of the small-pore Pd/SSZ-13 (Si/Al = 6), which contain ~100-90% atomically dispersed palladium ions, decreases its PNA performance only by ~10-20%, indicating agglomeration of only ~10-20% of all atomically dispersed Pd into PdO. High-field solid state 27Al NMR studies on the fresh and aged samples substantiate dealumination and significant changes in the distribution of Al (and thus, Brönsted acid) sites after hydrothermal aging. FTIR measurements with NO probe molecule and titration of Brönsted acid sites with nitrosyl (NO+) ions further corroborate the 27Al NMR data. Because framework aluminum atoms are the anchoring sites for atomically dispersed Pd ions, their elution from the framework causes the loss of active atomically dispersed Pd species. With the aid of HAADF-STEM imaging and synchrotron XRD studies, we further confirm and visualize the fate of these Pd species – they agglomerate into PdO nanoparticles on the external surface of zeolite. Consequently, these changes lead to the decrease in PNA performance of these materials after hydrothermal aging. The thus formed agglomerates cannot be re-dispersed back to their ionic state due to the loss of framework Al T-sites and/or inherent stability of such large PdO particles.
Our study demonstrates that, unlike in previous studies that found increased PNA performance upon HTA, high temperatures hydrothermal aging of PNA materials, that contain atomically dispersed Pd initially, results in a decrease in NOx storage efficiency due to the formation of PdO agglomerates. However, we also highlight the high hydrothermal stability of predominantly atomically dispersed 1-3 wt% Pd/SSZ-13 (Si/Al = 6), whose performance decreases only marginally after prolonged hydrothermal aging at 750 ºC. This study shows that hydrothermally stable passive NOx materials can be prepared using small-pore SSZ-13 zeolite.