Using Cost-Effective Density Functional Theory (DFT) to Calculate Equilibrium Isotopic Fractionation for Reactions Involving Large Organic Molecules

03 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With an eye towards applications in environmental sciences, the factors impacting the accuracy of calculating equilibrium isotopic fractionation α are considered. α is calculated from the reduced partition function relation β via the vibrational frequencies. Density-fitting (DF, or resolution of the identity – RI) is a popular tool to help reduce the cost of DFT energy calculations, and its impact on the accuracy of calculating vibration frequencies was determined to be negligible provided one uses a sufficiently large auxiliary density-fitting basis set. Using a set of high-accuracy fractionations for a series of small molecules, the accuracy of several density-functional theory (DFT) exchange–correlation functionals in calculating β was considered. Based on these results, a selection of functionals was tested against two benchmark databases of isotopic fractionations that were generated, one for D/H fractionation (HEIF11) and one for heavy-atom fractionation (CNOEIF35). It was found that, with the def2-TZVP basis set, O3LYP had the lowest mean absolute deviation (21‰ and 3.9‰, respectively), but the GGA/meta-GGA functionals τHCTHD3BJ, τHCTH and HCTH have almost similar performances (22‰ and 4.1‰, respectively, for τHCTHD3BJ). In this work we provide a roadmap to predict for equilibrium isotopic fractionations of large organic molecules, and constrain their potential uncertainties.

Keywords

density functional theory
isotopic fractionation
Bigeleisen-Mayer equation
density fitting
vibrational frequency

Supplementary materials

Title
Description
Actions
Title
Density Fitting Isotopic Fractionation - SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.