Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites

02 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The behaviour of grain boundaries in polycrystalline halide perovskite solar cells remains poorly understood. Whereas theoretical studies indicate that grain boundaries are not active for electron-hole recombination, there have been observations of higher non-radiative recombination rates involving these extended defects. We find that iodine interstitial defects, which have been established as a recombination center in bulk crystals, tend to segregate at planar defects in CsPbI3. First-principles calculations show that enhanced structural relaxation of the defects at grain boundaries results in increased stability (higher concentration) and deeper trap states (faster recombination). We show how the grain boundary can be partly passivated by halide mixing or extrinsic doping, which replaces or suppresses the formation of trap states close to the grain boundaries.

Keywords

grain boundary
trap
defect
extended defect
halide perovskite
recombination
segregation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.