Structure, Dynamics and Thermodynamics of Intruded Electrolytes in ZIF-8

30 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report here the properties of LiCl aqueous solutions at various concentrations confined inside the pores of the ZIF-8 metal–organic framework, based on classical molecular dynamics simulations. This system has been proposed for applications in the storage or dissipation of mechanical energy, using the liquid-phase intrusion of concentrated electrolytes in the hydrophobic framework. We describe the structure of the liquids and the influence of confinement, their dynamics, the mechanical properties of ZIF-8 and the impact of liquid intrusion on them. We show that the presence of the electrolyte has a moderate impact on the ZIF-8 framework, while the presence of the ZIF-8 matrix strongly influences the behavior of the confined aqueous solution, affecting the overall properties of the system. We also computed the free energy profile for the entry of water molecules and ions into the nanopores, showing a difference between anions and cations.

Keywords

intrusion
molecular simulation
electrolye solutions
Metal-Organic Frameworks

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.