Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Enantioselective Total Synthesis of Mavacuran Alkaloids

30 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the enantioselective total syntheses of mavacurans alkaloids, (+)-taberdivarine H, (+)-16-hydoxymethyl-pleiocarpamine, (+)-16-epi-pleiocarpamine, and their postulated biosynthetic precursor 16-formyl-pleiocarpamine. This family of monoterpene indole alkaloids is a target of choice since some of its members are subunits of intricate bisindole alkaloids such as bipleiophylline. Inspired by the biosynthetic hypothesis, we explored an oxidative coupling approach from the geissoschizine framework to form the N1-C16 bond. Quaternization of the aliphatic nitrogen was key to achieve the oxidative coupling induced by KHMDS/I2 since it hides the nucleophilicity of the aliphatic nitrogen and locks the required cis conformation.

Keywords

total synthesis
monoterpene indole alkaloids
oxidative coupling
mavacuran
pleiocarpamine
bioinspired

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.