Detection of Chemical Exchange in Methyl Groups of Macromolecules

11 March 2019, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The zero- and double-quantum methyl TROSY Hahn-echo and the methyl 1H-1H dipole- dipole cross-correlation nuclear magnetic resonance experiments enable estimation of multiple quantum chemical exchange broadening in methyl groups in proteins. The two relaxation rate constants are established to be linearly dependent using molecular dynamics simulations and empirical analysis of experimental data. This relationship allows chemical exchange broadening to be recognized as an increase in the Hahn-echo relaxation rate constant. The approach is illustrated by analyzing relaxation data collected at three temperatures for E. coli ribonuclease HI and by analyzing relaxation data collected for different cofactor and substrate complexes of E. coli AlkB.

Keywords

enzyme dynamics
NMR spectroscopy
spin relaxation

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.