Efficient Multi-Objective Molecular Optimization in a Continuous Latent Space

10 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we propose a novel method that combines in silico prediction of molecular properties such as biological activity or pharmacokinetics with an in silico optimization algorithm, namely Particle Swarm Optimization. Our method takes a starting compound as input and proposes new molecules with more desirable (predicted) properties. It navigates a machine-learned continuous representation of a drug-like chemical space guided by a de fined objective function. The objective function combines multiple in silico prediction models, de fined desirability ranges and substructure constraints. We demonstrate that our proposed method is able to consistently fi nd more desirable molecules for the studied tasks in relatively short time.

Keywords

De Novo Design
Chemoinformatics

Supplementary materials

Title
Description
Actions
Title
SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.