Design of a Small Molecule That Stimulates VEGFA Informed from an Expanded Encyclopedia of RNA Fold-Small Molecule Interactions

09 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Vascular Endothelial Growth Factor A(VEGFA) stimulates angiogenesis in human endothelial cells and increasing its expression is a potential treatment for heart failure, currently accomplished via gene or mRNA therapy. Herein, we describe a designed small molecule (TGP-377) that specifically and potently enhances VEGFA expression by targeting of a non-coding microRNA that regulates its expression. This investigation was initiated by studying the RNA motifs that bound small molecules from a subset of the AstraZeneca compound collection. A two-dimensional combinatorial screen (2DCS) revealed preferences in small molecule chemotypes that bind RNA and preferences in the RNA motifs that bind small molecules, increasing the known information by 20-fold. Analysis of this dataset against the RNA-mediated pathways that regulate VEGFA defined that the microRNA-377 precursor (pre-miR-377), which represses VEGFAmRNA translation, is druggable in a selective manner. The compound potently and specifically upregulated VEGFA in Human Umbilical Vein Endothelial Cells (HUVEC). Analysis of the proteome and angiogenic phenotype affected by TGP-377 demonstrated that the compound is highly potent and selective. These studies illustrate the power of 2DCS to define molecular recognition events between “undruggable” biomolecules and small molecules and the ability of sequence-based design to deliver efficacious compounds that target RNA and precisely and potently modulate disease-associated pathways.

Keywords

RNA
Chemical Biology
Drug Design
Molecular Recognition

Supplementary materials

Title
Description
Actions
Title
miR-377 Supplementary Information 4 8 2019
Description
Actions
Title
Proteomic analysis
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.