Polarization Transfer via Field Sweeping in Parahydrogen-Enhanced Nuclear Magnetic Resonance

04 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract


We show that in a spin system of two magnetically inequivalent protons coupled to a heteronucleus such as 13C, an adiabatic magnetic field sweep, passing through zero field, transfers proton singlet order into magnetization of the coupled heteronucleus. This effect is potentially useful in parahydrogen-enhanced nuclear magnetic resonance, and is demonstrated on singlet-hyperpolarized [1-13C]maleic acid, which is prepared via the reaction between [1-13C]acetylene dicarboxylic acid and para-enriched hydrogen gas. The magnetic field sweeps are of microtesla amplitudes, and have durations on the order of seconds. We show a polarization enhancement by a factor of 104 in the 13C spectra of [1-13C]maleic acid in a 1.4 T magnetic field.

Keywords

NMR techniques
adiabaticity
zero-field NMR
hyperpolarized NMR spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.