Electrochemically Gated Long Distance Charge Transport in Photosystem I

04 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understand charge transport mechanisms, and to design bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Here, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi energy and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.

Keywords

Electron transfer
Photosynthesis
Electrochemical scanning tunneling microscopy
Current decay
Electrochemical Gate

Supplementary materials

Title
Description
Actions
Title
LopezMartinez PSI 2019 preprint SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.