Efficient Ensemble Refinement by Reweighting

12 March 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In integrative structural biology/hybrid modeling approaches, we integrate structural models of macromolecules and experimental data to obtain faithful representations of the structures underlying the data. For example, in ensemble refinement by reweighting we first generate structural ensembles of flexible and dynamic biological macromolecules in molecular simulations. In a subsequent reweighting step, we refine the statistical weights of the structures to strike a balance between the information provided by simulations and by experimental data. For the "Bayesian inference of ensembles" approach (BioEn), we present two complementary methods to solve the underlying challenging high-dimensional optimization problem. We systematically investigate reliability, accuracy, and efficiency of these methods and integrate molecular dynamics simulations of the disordered peptide Ala-5 and NMR J-couplings. We provide an open-source library free of charge at https://github.com/bio-phys/BioEn.

Keywords

ensemble refinement
reweighting
Bayes
MaxEnt
BioEn
EROS
NMR
J-couplings
Ala-5

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.