Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of Beta-Peptides Targeting Penicillin-Binding Proteins

27 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In analogy to biosynthetic pathways leading to bioactive natural products, synthetic fermentation generates mixtures of molecules from simple building blocks under aqueous, biocompatible conditions, allowing for the resulting cultures to be directly screened for biological activity. In this work, a novel beta-peptide antibiotic was successfully identified using the synthetic fermentation platform. Phenotypic screening was carried out in an initially random fashion, allowing for simple identification of active cultures. Subsequent deconvolution, focused screening and structure-activity relationship studies led to the identification of a potent antimicrobial peptide, showing strong selectivity for our model system Bacillus subtilis over human Hek293 cells. To determine the antibacterial mechanism of action, a peptide probe bearing a photoaffinity tag was readily synthesized through the use of appropriate synthetic fermentation building blocks and utilized for target identification using a quantitative mass spectrometry-based strategy. The chemoproteomic approach led to the identification of a number of bacterial membrane proteins as prospective targets. These findings were validated through binding affinity studies with penicillin-binding protein 4 using microscale thermophoresis, with the bioactive peptide showing a dissociation constant (Kd) in the nanomolar range. Through these efforts, we provide a proof of concept for the synthetic fermentation approach presented here as a new strategy for the phenotypic discovery of novel bioactive compounds.

Keywords

library synthesis
combinatorial chemistry
antibiotics
chemical ligation
antimicrobial
antibacterial

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.