Differential Penetration of Ethanol and Water in Si-Chabazite: High Pressure Dehydration of Azeotrope Solution

27 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study is aimed to shed light on the mechanisms at the basis of the differential penetration of alcohol and water in hydrophobic zeolites at ambient (Pamb) and non-ambient pressure. Here we report the effects of the penetration of water and alcohol in an all-silica chabazite (Si-CHA) compressed with an ethanol/water azeotrope solution (ethanol : water = 95.63 : 4.37 by mass %). We collected in situ synchrotron X-ray Powder Diffraction (XRPD) data in order to monitor the structural modifications induced by the fluid penetration and to investigate the guest-guest and host-guest interactions. First principles molecular dynamics simulations allowed to complete the structural description at high pressure, providing an atomistic level description of the guest-guest hydrogen bond network. For a comprehensive understanding of the processes involving the Si-CHA + azeotrope interactions, both the zeolite and the alcohol/water solution were firstly investigated separately under pressure. The results obtained prove that both H2O and ethanol penetrate Si-CHA porosities even at Pamb. However, while in these conditions the H2O /ethanol ratio adsorbed inside Si-CHA is similar to that of the external azeotrope solution, under pressure the zeolite extra-framework content corresponds to a composition much richer in H2O than the azeotrope one. Hence, our results suggest that a dehydration effect occurred on the azeotrope solution, promoted by pressure. In addition, the experiment performed to test the elastic behavior of Si-CHA with a non-penetrating pressure transmitting medium interestingly indicates that Si-pure chabazite is the most compressible zeolite among those up to now studied in silicone oil.

Keywords

zeolites
high Pressure
X-ray powder diffraction
synchrotron XRPD
DFT calculations
Molecular dynamics
ab Initio Molecular Dynamics
azeotropic system
hydrophobic zeolites
Porous materials
Open Framework Structures
Chabazite
Modeling and Simulations
ethanol dehydration
Synchrotron in-situ XRPD

Supplementary materials

Title
Description
Actions
Title
TOC Si-CHA chemrxiv
Description
Actions
Title
SI SiCHA ChemRxiv
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.