Effect of Symmetric and Asymmetric Substitution on the Optoelectronic Properties of 9,10-Dicyanoanthracene

21 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A set of substituted 9,10-dicyanoanthracenes (DCA) has been synthesized, their photophysical and electrochemical properties in liquid solution have been characterized and supplemented by high level ab initio quantum chemical calculations. Three different methoxy-group-containing substituents have been linked to the DCA core in a symmetric and asymmetric fashion to produce six different species with strong quadrupole and dipole moments, respectively. The major difference between the symmetrically and asymmetrically substituted species are the enhanced two-photon absorption intensities of the former. In most of the cases studied, the molecules show reasonably large optical transition probabilities. The fluorescence brightness of these substances makes them interesting objects for two-photon absorption applications. Additionally, all molecules can be both easily reduced and oxidized electrochemically and are therefore suitable for optoelectronic applications.

Keywords

two-photon absorption spectra
Molecular Materials
ab initio modeling
Organic synthesis

Supplementary materials

Title
Description
Actions
Title
SI RSC final-2
Description
Actions
Title
ResearchData
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.