Crafting A More Environmentally Benign Extraction and Analysis of Pharmaceutical Precursors from a Medicinal Plant: A Student-Led Innovation

04 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A student-led research seminar was utilized to develop and validate an innovative 4-part undergraduate chemistry laboratory module that exposes students to a more environmentally benign method for the extraction and analysis of pharmaceutical-precursor alkaloids from the leaves of a medicinal plant, the Madagascar periwinkle. This plant is well known for its production of valuable pharmaceutical alkaloids but obtaining these compounds in therapeutic amounts has relied on traditional techniques that often ignore environmental impacts. Our student-directed design team has optimized an instructional protocol for extracting alkaloids from leaves by successfully, and for the first time, replacing the traditionally used dichloromethane extraction solvent with cyclopentyl methyl ether, a less environmentally harmful solvent. As a pedagogical exercise in the principles of green chemistry, students work in teams performing extractions with conventional vs. “green” solvents for comparison. We also introduce the student to the concept of the qualitative assay for alkaloid presence. Thin layer chromatography is performed with various solvents to optimize resolution of major alkaloid components, as well as to introduce fundamental principles of chromatography to the students. Finally, supercritical fluid chromatography is utilized as a previously unexplored, and less waste-producing analytical technique for confirmation of the presence of the valuable pharmaceutical precursors vindoline and catharanthine.

Keywords

Natural products
Green chemistry
SFC
TLC

Supplementary materials

Title
Description
Actions
Title
JCE Supplemental Data
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.