Polymer Nucleation under High-Driving Force, Long-Chain Conditions: Heat Release and the Separation of Timescales

19 February 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study reveals important features of polymer crystal formation at high-driving forces in entangled polymer melts based on simulations of polyethylene. First and in contrast to small-molecule crystallization, the heat released during polymer crystallization does not appreciably influence structural details of early-stage, crystalline clusters (crystal nuclei). Second, early-stage polymer crystallization (crystal nucleation) can occur without substantial chain-level relaxation and conformational changes. This study's results indicate that local structures and environments guide crystal nucleation in entangled polymer melts under high-driving force conditions. Given that such conditions are often used to process polyethylene, local structures and the separation of timescales associated with crystallization and chain-level processes are anticipated to be of substantial importance to processing strategies. This study highlights new research directions for understanding polymer crystallization.

Keywords

Polymers
Entangled Melts
Crystallization
Nucleation
Molecular Dynamics
Simulation

Supplementary materials

Title
Description
Actions
Title
SupplementaryMaterial
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.