Bayesian Optimization for Conformer Generation

22 October 2018, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Generating low-energy molecular conformers is a key task for many areas of computational chemistry, molecular modeling and cheminformatics. Most current conformer generation methods primarily focus on generating geometrically diverse conformers rather than finding the most probable or energetically lowest minima. Here, we present a new stochastic search method using Bayesian Optimization Algorithm (BOA) for finding the lowest energy conformation of a given molecule. We compare BOA with uniform random search, and systematic search as implemented in Confab, to determine which method finds the lowest energy. Energetic difference, root-mean-square deviation (RMSD), and torsion fingerprint deviation (TFD) are used to quantify differences between the conformer search algorithms. In general, we find BOA requires far fewer evaluations than systematic or uniform random search to find low-energy minima. For molecules with four or more rotatable bonds, Confab typically evaluates 104 (median) conformers in its search, while BOA only requires 102 energy evaluations to find top candidates. Despite evaluating fewer conformers, for many molecules, BOA finds lower-energy conformations than an exhaustive systematic Confab search.

Keywords

bayesian optimization
conformers
molecular modeling
cheminformatics
computational chemistry
Gaussian processes
force fields

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.