Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production

26 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in Nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene pathway (ADH) serve to leverage consecutive kinases to convert exogenous alcohols to pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway, isopentenyl phosphate kinase from Thermoplasma acidophilum, towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide non-natural pyrophosphates and provide a critical first step in characterizing the rate limiting steps in the artificial ADH pathway.

Keywords

Kinases
phosphorylation
terpenoids
isoprenoids
terpenes
pyrophosphates
hemiterpene
Synthetic Biology

Supplementary materials

Title
Description
Actions
Title
Lund et al ChemRXIV 2019 Supp Info
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.