The Different Organization of Water in Zeolite L and Its MOF Mimic

25 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Abstract:
Confinement of molecules inside one dimensional arrays of channel-shaped cavities has led to an impressive number of technologically interesting materials. However, the interactions governing the properties of the supramolecular aggregates still remain obscure, even in the case of the most common guest molecule: water. Herein, we use computational chemistry methods (#compchem) to study the water organization inside two different channel-type environments: zeolite L – a widely used matrix for inclusion of dye molecules, and ZLMOF – the closest metal-organic-framework mimic of zeolite L. In ZLMOF, the methyl groups of the ligands protrude inside the channels, creating nearly isolated nanocavities. These cavities host well-separated ring-shaped clusters of water molecules, dominated mainly by water-water hydrogen bonds. ZLMOF channels thus provide arrays of „isolated supramolecule“ environments, which might be exploited for the individual confinement of small species with interesting optical or catalytic properties. In contrast, the one dimensional nanochannels of zeolite L contain a continuous supramolecular structure, governed by the water interactions with potassium cations and by water-water hydrogen bonds. Water molecules impart a significant energetic stabilization to both materials, which increases by increasing the water content in ZLMOF, while the opposite trend is observed in zeolite L. The water network in zeolite L contains an intriguing hyper-coordinated structure, where a water molecule is surrounded by 5 strong hydrogen bonds. Such a structure, here described for the first time in zeolites, can be considered as a water pre-dissociation complex and might explain the experimentally detected high proton activity in zeolite L nanochannels.

Keywords

Zeolites
Metal Organic Frameworks
MOF
DFT calculations
host-guest materials
porous materials
confined water
#compchem
Open Frameworks
modeling and simulations

Supplementary materials

Title
Description
Actions
Title
zlmofzl
Description
Actions
Title
toc
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.