Molecular Engineering of an Alkaline Naphthoquinone Flow Battery

19 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aqueous organic redox flow batteries (AORFBs) have recently gained significant attention as a potential candidate for grid-scale electrical energy storage. Successful implementation of this technology will require redox-active organic molecules with many desired properties. Here we introduce a naphthoquinone dimer, bislawsone, as the redox-active material in a negative potential electrolyte (negolyte) for an AORFB. This novel dimerization strategy substantially improves the performance of the electrolyte vs. that of the lawsone monomer in terms of solubility, stability, reversible capacity, permeability and cell voltage. An AORFB pairing bislawsone with a ferri/ferrocyanide positive electrolyte delivers an open-circuit voltage of 1.05 V and cycles at a current density of 300 mA/cm2 with a negolyte concentration of 2 M electrons in alkaline solution. We determined the degradation mechanism for the naphthoquinone-based electrolyte using chemical analysis, and predict theoretically electrolytes based on naphthoquinones that will be even more stable.

Keywords

Aqueous Organic Redox Flow Batteries

Supplementary materials

Title
Description
Actions
Title
bislawsone-SI-submit
Description
Actions
Title
all molecules b3lyp 6311 gdp pcm
Description
Actions
Title
submit stable moleculess b3lyp 6311+gdp pcm
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.