Dynamism and Cooperativity Essential for Efficient Catalysis in Aspergillus Niger Monoamine Oxidase

13 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aspergillus niger Monoamine Oxidase (MAO-N) is a homodimeric enzyme responsible for the oxidation of amines into the corresponding imine. Laboratory evolved variants of MAO-N in combination with a non-selective chemical reductant represents a powerful strategy for the deracemisation of chiral amine mixtures and, thus, is of interest for obtaining chiral amine building blocks. MAO-N presents a rich conformational dynamics with a flexible ß-hairpin region that can adopt closed, partially closed and open states. Despite the ß-hairpin conformational dynamics is altered along the laboratory evolutionary pathway of MAO-N, the connection between the ß-hairpin conformational dynamics and active site catalysis still remains unclear. In this work, we use accelerated molecular dynamics to elucidate the potential interplay between the ß-hairpin conformational dynamics and catalytic activity in MAO-N wild type and its evolved D5 variant. Our study reveals a delicate communication between both MAO-N subunits that impacts the active site architecture, and thus its catalytic efficiency. In both MAO-N WT and the laboratory evolved D5 variant, the ß-hairpin conformation in one of the monomers affects the productive binding of the substrate in the active site of the other subunit. However, both MAO-N WT and D5 variants show a quite different behaviour due to the distal mutations introduced experimentally with Directed Evolution.

Keywords

Monoamine Oxidase
Conformational Dynamics
Biocatalysis
Cooperativity
Accelerated Molecular Dynamics

Supplementary materials

Title
Description
Actions
Title
SI advanced synthesis 010219 FINAL
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.