Single Oxygen Molecule Sensitivity of Organolead Halide Perovskite Photoluminescence

06 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The photoluminescence (PL) of organolead halide perovskites (OHPs) is sensitive to its surface conditions, especially surface defect states, making the PL of small OHP crystals an effective way to report their surface states. At the ensemble level, when averaging a lot of nanocrystals, the photoexcitation of OHP nanorods under inert nitrogen (N2) atmosphere leads to PL decline, while subsequent exposure to oxygen (O2) results to reversible PL recovery. At the single-particle level, individual OHP nanorods photoblinks, whose probability is dependent on both the excitation intensity and the O2 concentration. Combining the two sets of information, we are able to quantitatively evaluating the interaction between a single surface defect and a single O2 molecule using a kinetic model. This model provides fundamental insights that could help reconcile the contradicting views on the interactions of molecular O2 with OHP materials and help design a suitable OHP interface for a variety of applications in photovoltaics and optoelectronics.

Keywords

Nanorod photoblinking
photo-knockout
super-resolution optical imaging
kinetics models

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.