Formation Mechanism of a Nonterrestrial C6H Radical: An Ab Initio/RRKM Study on the Reaction of Tetracarbon with Acetylene

04 February 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study examined the formation mechanisms of singlet (rhombic) and triplet (linear) C4 with acetylene by using accurate ab initio CCSD(T)/cc-pVTZ/B3LYP/6-311G(d,p) calculations, followed by a kinetic analysis of various reaction pathways and computations of relative product yields in combustion and planetary atmospheres. These calculations were combined with the Rice–Ramsperger–Kassel–Marcus (RRKM) calculations of reaction rate constants for predicting product-branching ratios, which depend on the collision energy under single-collision conditions. The results show that the initial reaction begins with the formation of an intermediate t-i2, with entrance barriers of 3.8 kcal/mol, and an intermediate s-i1 without entrance barriers. On the triplet surface, the t-i2 rearranged the other C6H2 isomers, including t-i3, t-i4, and t-i6, through hydrogen migration; the t-i2, t-i3, t-i4, t-i5, and t-i6 isomers lost a hydrogen atom, and produced the most stable linear isomer of C6H, with an overall reaction exothermicity of 11 kcal/mol. Hydrogen elimination from the t-i10 isomer led to the formation of the annular C6H isomer, HC3C3 + H, at 23.9 kcal/mol above l-C4 + C2H2. On the singlet surfaces, s-i1 rearranged the other C6H2 isomers, including s-i2 and s-i4, through carbon–carbon bond cleavage. The s-i6 and s-i11 isomers also lost a hydrogen atom, and produced the linear C6H radical. Hydrogen elimination from the s-i4 isomer led to the formation of the annular C6H isomer. The s-i5 lost a hydrogen atom, and produced the six-member ring c-C6H isomer, at 2.1 kcal/mol higher than l-C4 + C2H2. The 1,1-H2 loss from the s-i10 isomer produced the linear hexacarbon l-C6 + H2 product, with an endothermicity of 2.3 kcal/mol and a 1,1-H2 loss from the s-i11 isomer, producing in the cyclic hexacarbon c-C6 + H2 product, with an exothermicity of 11.2 kcal/mol. The product-branching ratios obtained by solving kinetic equations with individual rate constants calculated using the RRKM and VTST theories for determining the collision energies between 5 kcal/mol and 25 kcal/mol show that l-C6H + H is the dominant reaction product, whereas HC3C3 + H, l-C6 + H2, c-C6H + H, and c-C6 + H2 are minor products with branching ratios. The s-i6 isomer was calculated to be the most stable C6H2 species, even more favorable than t-i3 (by 76 kcal/mol).

Keywords

Rice–Ramsperger–Kassel–Marcus
Tetracarbon
Acetylene
CCSD(T)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.