Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts

02 January 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Porous catalysts have garnered substantial interest as potential platforms for group-transfer catalysis due to the ability to site-isolate catalysts and to non-covalently co- localize substrates in proximity to reactive intermediates. In contrast to soluble molecular catalysts, the limited synthetic toolbox available to prepare porous catalysts presents a formidable challenge to controlling the primary coordination sphere of lattice-confined catalysts and thus modulating the electronic structures of reactive catalyst intermediates. Here, we utilize Sonogashira cross-coupling chemistry to prepare a family of porous metallopolymers, in which the primary coordination sphere of Ru2 sites is systematically varied. The newly synthesized materials are characterized by IR, elemental analysis, gas sorption, powder X-ray diffraction, thermogravimetric analysis, X-ray absorption spectroscopy, and diffuse-reflectance UV-vis-NIR spectroscopy. The resulting porous materials are catalysts for nitrene-transfer chemistry and the chemoselectivty for allylic amination of olefin aziridination can be tuned by modulating the primary coordination sphere of the catalyst sites. The demonstration of metallopolymerization as a rational synthetic strategy allows to translate ligand-modulated chemoselectivity to porous catalysts, which represents a new opportunity to tailor the functionality of heterogeneous analogues of molecular complexes.

Keywords

porous materials
C-H amination
chemoselectivity

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.