Machine Learning Enables Polymer Cloud-Point Engineering via Inverse Design

28 December 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. We demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4°C root mean squared error (RMSE) in a temperature range of 24– 90°C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80°C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.

Keywords

poly(2-oxazoline)
Polymer Design
LCST
inverse design

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.