Vibrational Coherences in Manganese Single-molecule Magnets after Ultrafast Photoexcitation

19 December 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Single-Molecule Magnets (SMMs) are metal complexes with two degenerate magnetic ground states arising from a non-zero spin ground state and a zero-field splitting. SMMs are promising for future applications in data storage, however, to date the ability to manipulate the spins using optical stimulus is lacking. Here, we have explored the ultrafast dynamics occurring after photoexcitation of two structurally related Mn(III)-based SMMs, whose magnetic anisotropy is closely related to the Jahn-Teller distortion, and demonstrate coherent modulation of the axial anisotropy on a femtosecond timescale. Ultrafast transient absorption spectroscopy in solution reveals oscillations superimposed on the decay traces with corresponding energies around 200 cm−1, coinciding with a vibrational mode along the Jahn-Teller axis. Our results provide a non-thermal, coherent mechanism to dynamically control the magnetisation in SMMs and open up new molecular design challenges to enhance the change in anisotropy in the excited state, which is essential for future ultrafast magneto-optical data storage devices.

Keywords

Ultrafast spectroscopy
Single-molecule magnets
Jahn–Teller effect
Wavepackets

Supplementary materials

Title
Description
Actions
Title
Mn3VibMode
Description
Actions
Title
Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.