Variable-Temperature Multinuclear Solid-State NMR Study of Oxide Ion Dynamics in Fluorite-Type Bismuth Vanadate and Phosphate Solid Electrolytes

13 December 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study, we employ a multinuclear, variable-temperature NMR spectroscopy approach to characterise and measure oxide ionic motion in the V- and P-substituted bismuth oxide materials Bi0.913V0.087O1.587, Bi0.852V0.148O1.648 and Bi0.852P0.148O1.648, previously shown to have excellent ionic conduction properties. Two main 17O NMR resonances are distinguished for each material, corresponding to O in the Bi–O and V–O/P–O sublattices. Using variable-temperature (VT) measurements ranging from room temperature to 923 K, the ionic motion experienced by these different sites has then been characterised, with coalescence of the two environments in the V-substituted materials clearly indicating a conduction mechanism facilitated by exchange between the two sublattices. The lack of this coalescence in the P-substituted material indicates a different mechanism, confirmed by 17O T1 (spin-lattice relaxation) NMR experiments to be driven purely by vacancy motion in the Bi–O sublattice. 51V and 31P VT-NMR experiments show high rates of tetrahedral rotation even at room temperature, increasing with heating. An additional VO4 environment appears in 17O and 51V NMR spectra of the more highly V-substituted Bi0.852V0.148O1.648, which we ascribe to differently distorted VO4 tetrahedral units that disrupt the overall ionic motion, consistent both with linewidth analysis of the 17O VT-NMR spectra and experimental results of Kuang et al. showing a lower oxide ionic conductivity in this material compared to Bi0.913V0.087O1.587 (Chem. Mater. 2012, 24, 2162). This study shows solid-state NMR is particularly well suited to understanding connections between local structural features and ionic mobility, and can quantify the evolution of oxide-ion dynamics with increasing temperature.

Keywords

Ionic conduction
Solid-state NMR
Electrolyte

Supplementary materials

Title
Description
Actions
Title
Supporting-Information-BVPO-O-conduction-final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.