Efficient prediction of structural and electronic properties of hybrid 2D materials using complementary DFT and machine learning approaches

20 August 2018, Version 4
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

There are now, in principle, a limitless number of hybrid van der Waals heterostructures that can be built from the rapidly growing number of two-dimensional layers. The key question is how to explore this vast parameter space in a practical way. Computational methods can guide experimental work however, even the most efficient electronic structure methods such as density functional theory, are too time consuming to explore more than a tiny fraction of all possible hybrid 2D materials. Here we demonstrate that a combination of DFT and machine learning techniques provide a practical method for exploring this parameter space much more efficiently than by DFT or experiment. As a proof of concept we applied this methodology to predict the interlayer distance and band gap of bilayer heterostructures. Our methods quickly and accurately predicted these important properties for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.

Keywords

DFT
machine Learning Predictions

Supplementary materials

Title
Description
Actions
Title
supplementary-v2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.