Understanding the Effects of Sample Preparation on the Chemical Structures of Petroleum Imaged with Non-contact Atomic Force Microscopy

24 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This study addresses the effect of sample preparation conditions on the structural integrity and composition of heavy hydrocarbon mixtures imaged by non-contact atomic force microscopy (nc-AFM). We designed and prepared a set of organic molecules mimicking well-accepted key characteristics of heavy oil asphaltenes including molecular architecture, molecular weight, boiling point, atomic H/C ratio and bond strength. We deliberately focused on multi-core molecule structures with long aliphatic linkers as this architecture was largely absent in previous nc-AFM studies of petroleum samples. The results confirm that all these molecules can be successfully imaged and remain intact under the same preparation conditions. Moreover, comparison with ultra-high resolution FT ICR-MS of a steam-cracked tar asphaltene sample suggests that the single molecules identified by nc-AFM span the entire molecule spectrum of the bulk sample. Overall, these results suggest that petroleum molecules within the scope of chosen molecules studied herein can be prepared intact and without bias and the imaged data can be representative.

Keywords

nc-AFM
sample preparation methods
petroleum hydrocarbons (PHCs)
structure characterizations
nc-AFM single molcule

Supplementary materials

Title
Description
Actions
Title
SI EffectsOfSamplePrep final ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.