Extracting Knowledge from DFT: Experimental Band Gap Predictions Through Ensemble Learning

23 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The field of materials science has seen an explosion in the amount of accessible high quality data. With this sudden surge of data, the application of machine learning (ML) onto materials data has led to great results. Particular success has been found in training models based on chemical formula. Such models have traditionally focused on learning from density functional theory (DFT) or experimental data. Though some researchers have explored the use of DFT calculated properties as features for learning, this has not gained much traction since the machine learning predictions would be limited by the DFT computation time and accuracy. In this work, we explore the use of a stacked ensemble learning system that combines machine learning from DFT calculations to improve learning on experimental data. This is accomplished by handling the DFT and experimental data separately, training distinct models for each. The DFT models are used to generate a "predicted DFT" value for the formulae in the experimental data. A meta-learner-trained using predictions generated by the experimental models combined with predictions from the DFT models-is shown to improve root-mean-squared-error by over 9% in the test data, when compared to a baseline model that only learns from the training data.

Keywords

DFT, Density Functional Theory
Machine Learning Techniques
band gap value
Neural NetworksA nonlinear model
Ensemble Machine Learning

Supplementary materials

Title
Description
Actions
Title
Extracting knowledge from DFT - Experimental band gap predictions through ensemble learning (ChemRxiv)
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.