Exploring the GDB-13 Chemical Space Using Deep Generative Models

09 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recent applications of Recurrent Neural Networks enable training models that sample the chemical space. In this study we train RNN with molecular string representations (SMILES) with a subset of the enumerated database GDB-13 (975 million molecules). We show that a model trained with 1 million structures (0.1 % of the database) reproduces 68.9 % of the entire database after training, when sampling 2 billion molecules. We also developed a method to assess the quality of the training process using log-likelihood plots. Furthermore, we use a mathematical model based on the “coupon collector problem” that compares the trained model to an upper bound, which shows that complex molecules with many rings and heteroatoms are more difficult to sample. We also suggest that the metrics obtained from this analysis can be used as a tool to benchmark any molecular generative model.

Keywords

Chemical Space Exploration
Deep Generative Models
Recurrent Neural Networks
Deep Learning
Chemical Databases

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.