Competitive Ligand Exchange and Dissociation in Ru Indenyl Complexes

17 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Kinetic profiles obtained from monitoring the solution phase substitution chemistry of [Ru(η5-indenyl)(NCPh)(PPh3)2]+ (1) by both ESI-MS and 31P{1H} NMR are essentially identical, despite an enormous difference in sample concentrations for these complementary techniques. These studies demonstrate dissociative substitution of the NCPh ligand in 1. Competition experiments using different secondary phosphine reagents provide a ranking of phosphine donor abilities at this relatively crowded half-sandwich complex: PEt2H > PPh2H >> PCy2H. The impact of steric congestion at Ru is evident also in reactions of 1 with tertiary phosphines; initial substitution products [Ru(η5-indenyl)(PR3)(PPh3)2]+ rapidly lose PPh3, enabling competitive recoordination of NCPh. Further solution experiments, relevant to the use of 1 in catalytic hydrophosphination, show that PPh2H out-competes PPh2CH2CH2CO2But (the product of hydrophosphination of tert-butyl acrylate by PPh2H) for coordination to Ru, even in the presence of a ten-fold excess of the tertiary phosphine. Additional information on relative phosphine binding strengths was obtained from gas-phase MS/MS experiments, including collision-induced dissociation (CID) experiments on the mixed phosphine complexes [Ru(η5-indenyl)PP’P’’]+, which ultimately appear in solution during the secondary phosphine competition experiments. Unexpectedly, unsaturated complexes [Ru(η5-indenyl)(PR2H)(PPh3)]+, generated in the gas-phase, undergo preferential loss of PR2H. We propose competing orthometallation of PPh3 is responsible for the surprising stability of the [Ru(η5-indenyl)(PPh3)]+ fragment under these conditions.

Keywords

Substitution reactions
electrospray ionization
NMR spectrometry
hydrophosphination
mass spectrometry studies

Supplementary materials

Title
Description
Actions
Title
belli-wu et al
Description
Actions
Title
belli-wu et al SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.