Porous Boron Nitride for Combined CO2 Capture and Photoreduction

15 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Porous and amorphous materials are typically not employed for photocatalytic purposes as their high number of defects can lead to low charge mobility and favour bulk electron-hole recombination. Yet, with a disordered nature can come porosity, which in turns promotes catalyst/reactant interactions and fast charge transfer to reactants. Here, we demonstrate that moving from h-BN, a well-known crystalline insulator to amorphous BN, we create a semiconductor, which is able to photoreduce CO2 in a gas/solid phase, under both UV-vis and pure visible light, ambient conditions, without the need for cocatalysts. The material selectively produces CO and maintains its photocatalytic stability over several catalytic cycles. The performance of this un-optimised material is on par with that of TiO2, the benchmark in the field. Owing to the chemical and structural tuneablity of porous BN, these findings highlights the potential of porous BN-based structure for photocatalysis and particularly solar fuels production.

Keywords

boron nitride
CO2 photoreduction
photocatalysis
solar fuels
porous materials

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.