Emergence of Selectivity in Inherently Nonselective Gold Nanoparticles Through Preferential Breaking of Interparticle Interactions

15 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We demonstrate a fundamentally unique identification strategy to impart selectivity to a traditionally and inherently nonselective carboxylate-functionalized gold-nanoparticles ([-] AuNPs), without the aid of any analyte specific ligands. The common practice is to use the ability of divalent ions to trigger the aggregation process in a kinetically trapped dispersed solution of [-] AuNPs. Aggregation of NPs being a thermodynamically favourable process will result in a uniform and nonselective turn-off response from most of the strongly binding divalent ions. Our approach is to use the abilities of various divalent ions to break a thermodynamically stable inter-nanoparticle precipitates containing [+] and [-] AuNPs (nanoionic precipitates), as the means of identification. Importantly both [+] and [-] AuNPs, independently, were ‘blind’ in terms of selectivity towards divalent ions. Remarkably, a hybrid-system composed of such nonselective nanoparticles was able to discriminate between the hard-to-distinguish pair of Pb2+ and Cd2+ ions. The rationale is that only the strongest of strongly binding ions will be able to break the interactions between the NP precipitates (thermodynamically stable state) and re-disperse them back in solution (kinetically trapped state). This is in stark contrast with the conventional idea of forming an interaction between NPs and divalent ions, with the help of analyte-specific ligands.

Keywords

nanoparticles
Surface chemistry
Self-assembly
interparticle forces
Selective Identification

Supplementary materials

Title
Description
Actions
Title
Emergence of Selectivity Supplementary Information Pramod Pillai
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.