Noncollinear Relativistic DFT+U Calculations of Actinide Dioxide Surfaces

03 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A noncollinear relativistic PBEsol+U study of the low-index actinide dioxides (AnO2, An = U, Np, Pu) surfaces has been conducted. The surface properties of the AnO2 have been investigated and the importance of the reorientation of magnetic vectors relative to the plane of the surface is highlighted. In collinear nonrelativistic surface models, the orientation of the magnetic moments is often ignored; however, the use of noncollinear relativistic methods is key to the design of reliable computational models. The ionic relaxation of each surface is shown to be confined to the first three monolayers and we have explored the configurations of the terminal oxygen ions on the reconstructed (001) surface. The reconstructed (001) surfaces are ordered as (001)αβ < (001)α < (001)β in terms of energetics. Electrostatic potential isosurface and scanning tunneling microscopy images have also been calculated. By considering the energetics of the low-index AnO2 surfaces, an octahedral Wulff crystal morphology has been calculated.

Keywords

Nuclear Fuel
Actinide Dioxides
UO2
NpO2
PuO2
noncollinear magnetism
Density Functional Theory
Surface Chemistry

Supplementary materials

Title
Description
Actions
Title
Noncollinear Relativistic DFT+U Calculations of Actinide Dioxide Surfaces (Supporting Information)
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.