Primary Photochemical Dynamics of a Triply-Bonded Metal Carbonyl Dimer Probed Via Ultrafast Infrared Spectroscopy

22 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The primary photochemical dynamics of [Cp*Cr(CO)2]2 have been studied using picosecond time-resolved infrared (TRIR) spectroscopy. Upon visible or UV photoexcitation, the primary photochemical pathway is formation of a transient rear- rangement isomer with a weakened Cr≡Cr bond and two terminal carbonyl ligands rearranged to a bridging conformation. This species reverts to the parent dimer on the time scale of 378 ± 15 ps, and Density Functional Theory calculations suggest that this transient species is characterized by a triplet spin state and a trans conformation of the two terminal CO ligands. Photolysis in neat THF solution is unable to trap the transient intermediate via solvent-coordination. The excited state transient rearrangement isomer appears to adopt a distorted structure in THF, relative to cyclohexane, evidenced by the observation of an additional bridging-CO stretching band in THF solution. The lifetime of the transient in THF is just slightly shorter at 344 ± 17 ps. The CO-loss product of 1 has been characterized previously and adopts an asymmetric arrangement of the three bridging CO ligands. In neat THF solution, the CO-loss complex is not observed to react with THF on the picosecond timescale, although a previous study on longer timescales observed formation of a THF adduct of the CO-loss complex in dilute alkane/THF solutions. Though the molybdenum congener, [Cp*Mo(CO)2]2, is unstable in solution, decaying on the timescale of a few hours in cyclohexane, TRIR experiments demonstrate that no bridged photoproducts (transient or long-lived) are formed from the Mo complex in cyclohexane solution.

Keywords

Organometallic photochemistry
Time-resolved infrared spectroscopy
Ultrafast Spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.