Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry

21 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Machine learning the electronic structure of open shell transition metal complexes presents unique challenges, including robust and automated data set generation. Here, we introduce tools that simplify data acquisition from density functional theory (DFT) and validation of trained machine learning models using the molSimplify automatic design (mAD) workflow. We demonstrate this workflow by training and comparing the performance of LASSO, kernel ridge regression (KRR), and artificial neural network (ANN) models using heuristic, topological revised autocorrelation (RAC) descriptors we have recently introduced for machine learning inorganic chemistry. On a series of open shell transition metal complexes, we evaluate set aside test errors of these models for predicting the HOMO level and HOMO-LUMO gap. The best performing models are ANNs, which show 0.15 and 0.25 eV test set mean absolute errors on the HOMO level and HOMO-LUMO gap, respectively. Poor performing KRR models using the full 153-feature RAC set are improved to nearly the same performance as the ANNs when trained on down-selected subsets of 20-30 features. Analysis of the essential descriptors for HOMO and HOMO-LUMO gap prediction as well as comparison to subsets previously obtained for other properties reveals the paramount importance of non-local, steric properties in determining frontier molecular orbital energetics. We demonstrate our model performance on diverse complexes and in the discovery of molecules with target HOMO-LUMO gaps from a large 15,000 molecule design space in minutes rather than days that full DFT evaluation would require.

Keywords

transition metal chemistry
machine learning
automation
computational screening
HOMO
HOMO-LUMO gap

Supplementary materials

Title
Description
Actions
Title
IECR2 supportingInformation v1
Description
Actions
Title
geometries
Description
Actions
Title
data
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.