Faraday-Cage Screening Reveals Intrinsic Aspects of the van der Waals Attraction

20 June 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

General properties of the recently observed screening of the van der Waals (vdW) attraction between a silica substrate and silica tip by insertion of graphene are predicted using basic theory and first-principles calculations. Results are then focused on possible practical applications, as well as an understanding of the nature of vdW attraction, considering recent discoveries showing it competing against covalent and ionic bonding. The traditional view of the vdW attraction as arising from pairwise-additive London dispersion forces is considered using Grimme’s “D3” method, comparing results to those from Tkatchenko’s more general many-body dispersion (MBD) approach, all interpreted in terms of Dobson’s general dispersion framework. Encompassing the experimental results, MBD screening of the vdW force between two silica bilayers is shown to scale up to medium separations as 1.25 de/d, where d is the bilayer separation and de its equilibrium value, depicting antiscreening approaching and inside de. Means of unifying this correlation effect with those included in modern density functionals are urgently required.

Keywords

Dispersion Corrected DFT
nanoassemblies
graphene
Heterostructures

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.