Scandium Alkyl and Hydride Complexes Supported by a Pentadentate Diborate Ligand: Reactions with CO2 and N2O

13 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Alkyl and hydrido scandium complexes of the dianionic pentatdentate ligand B2Pz4Py are reported. The key starting material (B2Pz4Py)ScCl is readily prepared and alkylated with organolithium reagents RLi (R = CH3, CH2SiMe3, CH2SiMe2Ph, CH2CH2CH3 and CH2CHMe2) to form alkyl derivatives in 61-93% yields. These compounds are very thermally stable and do not undergo sigma bond metathesis reactions with dihydrogen. The hydrido complex was prepared from (B2Pz4Py)ScCl and NaHBEt3 in 80% yield and was found to be more stable by 28 kcal mol-1 as a dimer, rather than a monomeric hydrido complex. However, the monomer is accessible through dissociation of the dimer at 80˚C. All of the compounds (B2Pz4Py)ScR react with water to form the bridging oxo dimer (B2Pz4Py)ScOSc(B2Pz4Py). The reactivity of the hydrido and methyl complexes towards carbon dioxide was explored; heating to 80˚C results in the formation of k2 formato and acetate complexes, respectively. The mechanisms were studied via density function theory and distinct transition states for insertion of CO2 into the Sc-R (R = H, CH3) were found, with the insertion into the Sc-CH3 being more enthalpically difficult (by 18 kcal mol-1) than insertion into Sc-H. The slow rate of reaction between [(B2Pz4Py)ScH]2 and CO2 is attributed to the barrier associated with dimer dissociation. In both insertion reactions, the kinetic products are k1 formato or acetate complexes that are only slightly less stable than the observed k2 derivatives. The k1 compounds can therefore be trapped by treating the k2 isomers with tris-pentafluorophenyl borane.

Keywords

Organoscandium Complexes
Carbon Dioxide Insertion Process
scandium hydrides

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.