Improving Solvation Energy Predictions Using The SMD Solvation Method and Semiempirical Electronic Structure Methods

27 June 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The PM6 implementation in the GAMESS program is extended to elements requiring d-integrals and interfaced with the conducter-like polarized continuum model (C-PCM) of solvation, in- cluding gradients. The accuracy of aqueous solvation energies computed using AM1, PM3, PM6, and DFTB and the SMD continuum solvation model is tested using the MNSOL data set. The errors in SMD solvation energies predicted using NDDO-based methods is considerably larger than when using DFT and HF, with RMSE values of 3.4-5.9 (neutrals) and 6-15 kcal/mol (ions) compared to 2.4 and ca 5 kcal/mol for HF/6-31G(d). For the NDDO-based methods the errors are especially large for cations and considerably higher than the corresponding COSMO results, which suggests that the NDDO/SMD results can be improved by re-parameterizing the SMD parameters focusing on ions. We found the best results are obtained by changing only the radii for hydrogen, carbon, oxygen, nitrogen, and sulfur and this leads to RMSE values for PM3 (neutrals: 2.8/ions: ca 5 kcal/mol), PM6 (4.7/ca 5 kcal/mol), and DFTB (3.9/ca 5 kcal/mol) that are more comparable to HF/6-31G(d) (2.4/ca 5 kcal/mol). Though the radii are optimized to reproduce aqueous solvation energies, they also lead more accurate predictions for other polar solvents such as DMSO, acetonitrile, and methanol, while the improvements for non-polar solvents are negligible.

Keywords

continuum solvation
semiempirical methods

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.