Self-Assembly of α-Tocopherol Transfer Protein Nanoparticles – a Patchy-Protein Model

30 May 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We describe the mechanism of self-aggregation of α-tocopherol transfer protein into a spherical nano-cage employing by Monte Carlo simulations. The protein is modelled by a patchy coarse-grained representation, where the protein-protein interfaces, determined in the past by x-ray diffraction, are represented by simplified two-body interaction potentials. Our results show that the oligomerization kinetics proceeds in two steps, with the formation of meta-stable trimeric units, and the subsequent assembly into the spherical aggregates. Data are in agreement with experimental observations regarding the prevalence of different aggregation states at specific ambient conditions. Finally, our results indicate a route for the experimental stabilization of the trimer, crucial for the understanding of the physiological role of such aggregates in vitamin E body trafficking.

Keywords

Monte Carlo
Coarse-Grained
nano-cage
protein aggregation

Supplementary materials

Title
Description
Actions
Title
SI peltzer attp
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.