Synthesis, PtS-Type Structure, and Anomalous Mechanics of the Cd(CN)2 Precursor Cd(NH3)2[Cd(CN)4]

26 March 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the nonaqueous synthesis of Cd(CN)2 by oxidation of cadmium metal with Hg(CN)2 in liquid ammonia. The reaction proceeds via an intermediate of composition Cd(NH3)2[Cd(CN)4], which converts to Cd(CN)2 on prolonged heating. Powder X-ray diffraction measurements allow us to determine the crystal structure of the previously-unreported Cd(NH3)2[Cd(CN)4], which we find to adopt a twofold interpenetrating PtS topology. We discuss the effect of partial oxidation on the Cd/Hg composition of this intermediate, as well as its implications for the reconstructive nature of the deammination process. Variable-temperature X-ray diffraction measurements allow us to characterise the anisotropic negative thermal expansion (NTE) behaviour of Cd(NH3)2[Cd(CN)4] together with the effect of Cd/Hg substitution; ab initio density functional theory (DFT) calculations reveal a similarly anomalous mechanical response in the form of both negative linear compressibility (NLC) and negative Poisson's ratios.

Keywords

Framework materials
Negative thermal expansion
Negative linear compressibility

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.