Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal-Organic Frameworks

08 March 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this article we report the synthesis and detailed analysis of the highly porous metal-organic framework DUT-48, isoreticular to DUT-49 a material which shows an adsorption-induced structural transition. DUT-48 has impressive porosity and methane storage capacity, however displays conventional adsorption behaviour. The contrasting flexibility of DUT-48 and DUT-49 were analysed and rationalised using a combination of novel experimental and computational techniques. Microcalorimetry measurements, in conjunction with molecular simulations, demonstrate that DUT-48 has a significantly lower adsorption enthalpy difference and a higher framework stiffness which leads to an absence of adsorption-induced transitions and negative gas adsorption (NGA). However, by analysing the mechanical behaviour of both DUT-48 and DUT-49, employing mercury porosimetry experiments, we discovered that both materials exhibit large volume changes under hydrostatic compression, demonstrating noteworthy potential as shock absorbers, and directly linking internal adsorption-induced contraction to external hydrostatic compression.

Keywords

metal--organic framework
nanoporous
adsorption
stimuli-responsive
thermodynamics
soft porous materials
shock-absorber behavior

Supplementary materials

Title
Description
Actions
Title
2018-03-07 DUT-48 ESI
Description
Actions
Title
dut48 experiment
Description
Actions
Title
dut48cp simulation
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.