Guest-Dependent Stabilization of the Low Spin State in Spin-Crossover Metal-Organic Frameworks

02 March 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computer simulations are carried out to characterize the variation of spin crossover (SCO) behavior of the prototypical {Fe(pz)[Pt(CN)4]} metal-organic framework (MOF) upon adsorption of chemically and structurally different guest molecules. A detailed analysis of both strength and anisotropy of guest molecule-framework interactions reveals direct correlations between the mobility of the guest molecules inside the MOF pores, the rotational mobility of the pyrazine rings of the framework, and the stabilization of the low-spin state of the material. Based on these correlations, precise molecular criteria are established for predicting the spin state of {Fe(pz)[Pt(CN)4]} upon guest adsorption. Finally, predictions of the SCO temperature upon adsorption of various toxic gases demonstrate that in silico modeling can provide fundamental insights and design principles for the development of spin-crossover MOFs for applications in gas detection and chemical sensing.

Keywords

metal-organic frameworks
spin crossover
chemical sensors
ligand field molecular mechanics

Supplementary materials

Title
Description
Actions
Title
Supp
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.