pH-Dependent Cooperativity and Existence of a Dry Molten Globule in the Folding of a Miniprotein BBL

16 October 2017, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to explore the pH-dependent stability and folding mechanism of a miniprotein BBL, which has drawn intense debate in the past. Consistent with the two-state model, simulations showed native and denatured states with pH-dependent populations. However, at pH 7, the folding barrier is marginal and it vanishes as pH is decreased to 5, in agreement with the downhill folding hypothesis. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via a sparsely populated intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.

Keywords

Protein folding
Protein electrostatics
pH effects
Acid denaturation
Chemistry
Biological Sciences

Supplementary materials

Title
Description
Actions
Title
BBL chemrxiv SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.