Abstract
Phenanthridines belong to a very important class of nitrogen containing heterocylic compounds and constitute core structure of many natural alkaloids such as trisphaeridine and nitidine. Quarternarybenzo[c]phenanthridine alkaloids (QBA) represented by sanguinarine(SA), chelerythrine (CHE), and fagaronine (FA) exhibit antifungal and nematocidal properties and also serve as the core structure of broad range of medicinally active molecules showing anti-tumor activity, anti-viral property, anti-neoplastic or mutagenic activity through DNA-intercalation. Phenanthridines are also utilized for the synthesis of compounds of therapeutic interests such as anticancer platinum complex typified by phenanthriplatin antibacterial, anti-infectives, antprotozoal, antituberculosis, antitrypanosomiasis compounds. Although conventional synthetic methods towards their development showed their own advantages, they generally involved either multistep processes with low yield, or starting materials which are not readily available or requirement of prefunctionalization. Hence herein we present the development of an efficient and convenient synthetic methodology towards these versatile compounds.