A Self-Improving Photosensitizer Discovery System via Bayesian Optimization and Quantum Chemical Calculation

11 June 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Artificial intelligence (AI) based self-learning or self-improving material discovery system is the holy grail of next-generation material discovery and materials science. Herein, we demonstrate how to combine accurate prediction of material performance via quantum chemical calculations and Bayesian optimization-based active learning to realize a self-improving discovery system for high-performance photosensitizers (PS). Through self-improving cycles, such a system can improve the model prediction accuracy (best mean average error of 0.09 eV for singlet-triplet spitting) and high-performance PS search ability, realizing the efficient discovery of PS. From a molecular space with more than 7 million molecules, 5950 potential high-performance PSs were discovered.

Keywords

photosensitizers
material discovery approach
active learning strategies

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.